персональный сайт
Ткаченко Виктора Викторовича
Предсказания теории относительности

Предсказания теории относительности

Эффекты, связанные с ускорением систем отсчёта

Впервые влияние ускорения на системы отсчёта было описано Эйнштейном ещё в 1907 году в рамках специальной теории относительности. Таким образом, описываемые ниже эффекты присутствуют и в ней, а не только в ОТО.

Первый из этих эффектов — гравитационное замедление времени, из-за которого любые часы будут идти тем медленнее, чем глубже в гравитационной яме (ближе к гравитирующему телу) они находятся. Данный эффект был непосредственно подтверждён в эксперименте Хафеле — Китинга и учитывается в системах навигации (GPS, Глонасс, Галилео).

Непосредственно связанный с этим эффект — гравитационное красное смещение света. Под этим эффектом понимают уменьшение частоты света относительно локальных часов (соответственно, смещение линий спектра к красному концу спектра относительно локальных масштабов) при распространении света из гравитационной ямы наружу (из области с меньшим гравитационным потенциалом в область с большим потенциалом). Гравитационное красное смещение было обнаружено в спектрах звёзд и Солнца и надёжно подтверждено в эксперименте Паунда — Ребки.

Гравитационное замедление времени влечёт за собой ещё один эффект, названный эффектом Шапиро (также известный как гравитационная задержка сигнала). Из-за этого эффекта в поле тяготения электромагнитные сигналы идут дольше, чем в отсутствие этого поля. Данное явление было обнаружено при радиолокации планет солнечной системы и космических кораблей, проходящих позади Солнца, а также при наблюдении сигналов от двойных пульсаров.

Гравитационное отклонение света

Искривление пути света происходит в любой ускоренной системе отсчёта. Детальный вид наблюдаемой траектории и гравитационные эффекты линзирования зависят, тем не менее, от кривизны пространства-времени. Эйнштейн узнал об этом эффекте в 1911 году, и, когда он эвристическим путём вычислил величину кривизны траекторий, она оказалась такой же, какая предсказывалась классической механикой для частиц, движущихся со скоростью света. В 1916 году Эйнштейн обнаружил, что угловой сдвиг направления распространения света в ОТО в два раза больше, чем в ньютоновской теории. Таким образом, это предсказание стало ещё одним способом проверки ОТО.

С 1919 года данное явление было подтверждено астрономическими наблюдениями звёзд в процессе затмений Солнца, а также радиоинтерферометрическими наблюдениями квазаров, проходящих вблизи Солнца во время его пути по эклиптике.

Гравитационное линзирование происходит, когда один отдалённый массивный объект находится вблизи или непосредственно на линии, соединяющей наблюдателя с другим объектом, намного более удалённым. В этом случае искривление траектории света более близкой массой приводит к искажению формы удалённого объекта, которое при малом разрешении наблюдения приводит, в основном, к увеличению совокупной яркости удалённого объекта, поэтому данное явление было названо линзированием. Первым примером гравитационного линзирования было получение в 1979 году двух близких изображений одного и того же квазара QSO 0957+16 A, B (z=1,4) английскими астрономами Д. Уолшем и др. «Когда выяснилось, что оба квазара изменяют свой блеск в унисон, астрономы поняли, что в действительности это два изображения одного квазара, обязанные эффекту гравитационной линзы. Вскоре нашли и саму линзу — далёкую галактику (z=0,36), лежащую между Землей и квазаром»[37]. С тех пор было найдены много других примеров отдалённых галактик и квазаров, затрагиваемых гравитационным линзированием. Например, известен так называемый Крест Эйнштейна, когда галактика учетверяет изображение далёкого квазара в виде креста.

Специальный тип гравитационного линзирования называется кольцом или дугой Эйнштейна. Кольцо Эйнштейна возникает, когда наблюдаемый объект находится непосредственно позади другого объекта со сферически-симметричным полем тяготения. В этом случае свет от более отдалённого объекта наблюдается как кольцо вокруг более близкого объекта. Если удалённый объект будет немного смещён в одну сторону и/или поле тяготения не сферически-симметричное, то вместо этого появятся частичные кольца, называемые дугами.

Наконец, у любой звезды может увеличиваться яркость, когда перед ней проходит компактный массивный объект. В этом случае увеличенные и искажённые из-за гравитационного отклонения света изображения дальней звезды не могут быть разрешены (они находятся слишком близко друг к другу) и наблюдается просто повышение яркости звезды. Этот эффект называют микролинзированием, и он наблюдается теперь регулярно в рамках проектов, изучающих невидимые тела нашей Галактики по гравитационному микролинзированию света её звёзд — МАСНО, EROS и другие.

Чёрные дыры

Чёрная дыра — область, ограниченная так называемым горизонтом событий, которую не может покинуть ни материя, ни информация. Предполагается, что такие области могут образовываться, в частности, как результат коллапса массивных звёзд. Поскольку материя может попадать в чёрную дыру (например, из межзвёздной среды), но не может её покидать, масса чёрной дыры со временем может только возрастать.

Стивен Хокинг, тем не менее, показал, что чёрные дыры могут терять массу за счёт излучения, названного излучением Хокинга. Излучение Хокинга представляет собой квантовый эффект, который не нарушает классическую ОТО.

Известно много кандидатов в чёрные дыры, в частности супермассивный объект, связанный с радиоисточником Стрелец A* в центре нашей Галактики. Большинство учёных убеждены, что наблюдаемые астрономические явления, связанные с этим и другими подобными объектами, надёжно подтверждают существование чёрных дыр, однако существуют и другие объяснения: например, вместо чёрных дыр предлагаются бозонные звёзды и другие экзотические объекты.

Орбитальные эффекты

ОТО корректирует предсказания ньютоновской теории небесной механики относительно динамики гравитационно связанных систем: Солнечная система, двойные звёзды и т.д.

Первый эффект ОТО заключался в том, что перигелии всех планетных орбит будут прецессировать, поскольку гравитационный потенциал Ньютона будет иметь малую добавку, приводящую к формированию незамкнутых орбит. Это предсказание было первым подтверждением ОТО, поскольку величина прецессии, выведенная Эйнштейном в 1916 году, полностью совпала с аномальной прецессией перигелия Меркурия. Таким образом была решена известная в то время проблема небесной механики.

Позже релятивистская прецессия перигелия наблюдалась также у Венеры, Земли, и как более сильный эффект в системе двойного пульсара. За открытие первого двойного пульсара PSR B1913+16 в 1974 году Р. Халс и Д. Тейлор получили Нобелевскую премию в 1993 году.

Другой эффект — изменение орбиты, связанное с гравитационным излучением двойной и более кратной системы тел. Этот эффект наблюдается в системах с близко расположенными звёздами и заключается в уменьшении периода обращения. Он играет важную роль в эволюции близких двойных и кратных звёзд[46]. Эффект впервые наблюдался в вышеупомянутой системе PSR B1913+16 и с точностью до 0,2% совпал с предсказаниями ОТО.

Ещё один эффект — геодезическая прецессия. Она представляет собой прецессию полюсов вращающегося объекта в силу эффектов параллельного перенесения в криволинейном пространстве-времени. Данный эффект отсутствует в ньютоновской теории тяготения. Предсказание геодезической прецессии было проверено в эксперименте с зондом НАСА «Грэвити Проуб Би» (Gravity Probe B). Руководитель исследований данных, полученных зондом, Фрэнсис Эверитт на пленарном заседании Американского физического общества 14 апреля 2007 года заявил о том, что анализ данных гироскопов позволил подтвердить предсказанную Эйнштейном геодезическую прецессию с точностью превосходящей 1%.

Увлечение инерциальных систем отсчёта

Увлечение инерциальных систем отсчёта вращающимся телом заключается в том, что вращающийся массивный объект «тянет» пространство-время в направлении своего вращения: удалённый наблюдатель в покое относительно центра масс вращающегося тела обнаружит, что самыми быстрыми часами, то есть покоящимися относительно локально-инерциальной системы отсчёта, на фиксированном расстоянии от объекта являются часы, имеющие компоненту движения вокруг вращающегося объекта в направлении вращения, а не те, которые находятся в покое относительно наблюдателя, как это происходит для невращающегося массивного объекта. Точно так же удалённым наблюдателем будет установлено, что свет двигается быстрее в направлении вращения объекта, чем против его вращения. Увлечение инерциальных систем отсчёта также вызовет изменение ориентации гироскопа во времени. Для космического корабля на полярной орбите направление этого эффекта перпендикулярно геодезической прецессии, упомянутой выше.

Поскольку эффект увлечения инерциальных систем отсчёта в 170 раз слабее эффекта геодезической прецессии, стэнфордские учёные пока по-прежнему извлекают его «отпечатки» из информации, полученной зондом «Грэвити Проуб Би» (Gravity Probe B).

Космология

Хотя общая теория относительности была создана как теория тяготения, скоро стало ясно, что эту теорию можно использовать для моделирования Вселенной как целого, и так появилась физическая космология. Центральным пунктом для физической космологии является метрика Фридмана — Лемэтра — Робертсона — Уокера, которая является космологическим решением уравнений Эйнштейна. Это решение предсказывает, что Вселенная должна быть динамической: она должна расширяться, сжиматься или совершать постоянные колебания.

Эйнштейн сначала не мог примириться с идеей относительно динамической Вселенной, хотя она явно следовала из уравнений Эйнштейна без космологического члена. Поэтому в попытке переформулировать ОТО так, чтобы решения описывали статичную Вселенную, Эйнштейн добавил космологическую постоянную к полевым уравнениям (см. выше). Однако, получившаяся статическая вселенная была нестабильна. Позднее в 1929 году Эдвин Хаббл показал, что красное смещение света от отдалённых галактик указывает, что они удаляются от нашей собственной галактики со скоростью, которая пропорциональна их расстоянию от нас. Это продемонстрировало, что вселенная действительно нестатична и расширяется. Открытие Хаббла показало несостоятельность возражений Эйнштейна и использование им космологической постоянной. Теория нестационарной Вселенной с космологическим членом была создана, впрочем, ещё до открытия закона Хаббла усилиями Фридмана, Лемэтра и ДеСиттера.

Уравнения для расширяющейся вселенной показывают, что она становится сингулярной, если вернуться назад во времени достаточно далеко. Это событие называют Большим Взрывом. В 1948 году Дж. Гамов издал статью, описывающую процессы в ранней Вселенной и предсказывающую существование космического микроволнового фонового излучения, происходящего от горячей плазмы Большого Взрыва; в 1949 году Р. Алфер и Герман провели более подробные вычисления. В 1965 году А. Пензиас и Р. Вилсон впервые наблюдали фоновое излучение, подтвердив таким образом теорию Большого Взрыва и горячей ранней Вселенной.